
An Automated Benchmarking Toolset1

Michel Courson2, Alan Mink, Guillaume Marçais3, Benjamin Traverse3

100 Bureau Drive, Stop 8951
Gaithersburg MD 20899-8951, USA

{michel.courson, amink, guillaume.marcais}@nist.gov

Abstract. The drive for performance in parallel computing and the need to
evaluate platform upgrades or replacements are major reasons frequent running
of benchmark codes has become commonplace for application and platform
evaluation and tuning. NIST is developing a prototype for an automated
benchmarking toolset to reduce the manual effort in running and analyzing the
results of such benchmarks. Our toolset consists of three main modules. A Data
Collection and Storage module handles the collection of performance data and
implements a central repository for such data. Another module provides an
integrated mechanism to analyze and visualize the data stored in the repository.
An Experiment Control Module assists the user in designing and executing
experiments. To reduce the development effort this toolset is built around
existing tools and is designed to be easily extensible to support other tools.

Keywords. Cluster computing, data collection, database, performance
measurement, performance analysis, queuing system, visualization.

1. Introduction

The drive for performance in parallel computing and the need to evaluate platform
upgrades or replacements are major reasons frequent running of benchmark codes has
become commonplace. By “benchmark code” we refer not only to well known codes
designed to evaluate platforms, but also to any piece of code used for performance
evaluation or in need of tuning.

NIST is developing a prototype of an automated benchmarking toolset to reduce
the manual effort involved in running benchmarks, to provide a central repository for
all the collected data, current and archival, and to provide an integrated mechanism to
analyze and visualize that data. To reduce the development effort and leverage the
work of other tool developers, we intend to build this benchmarking toolset around
existing tools and only produce “glue” and “gap” code as necessary.

Such an automated benchmarking toolset will support both production
environments and research environments. For a production environment such a toolset

1 This NIST contribution is not subject to copyright in the United States. Certain commercial

items may be identified but that does not imply recommendation or endorsement by NIST,
nor does it imply that those items are necessarily the best available.

2 Visiting scientist from University of Maryland, UMIACS.
3 Guest researcher from the Institut National des Télécommunications, France.

can reduce the manual effort required and speed up the overall benchmark and
evaluation process. In addition, the database will provide a means to produce
unplanned comparisons over a much longer epoch, limited by the age of the database.
Through its database of performance information, such a toolset also provides a rich
environment for standard and innovative performance analysis, as well as a means to
produce unplanned comparisons.

Data Description

Data Collection

Storage

1. Data Collection and Storage

Visualization

Cluster Metrics

Exploratory techniques

Statistics

Data Analysis

2. Analysis and Visualization

Experiment Specification

Experimental Plan Design

Run Control

Front End

3. Experiment Design and Control

Automated Benchmarking Tool

Fig. 1. Project Organization Chart

1.1 Design Overview

The proposed benchmarking toolset consists of three major modules as shown in
Figure 1: (1) the Data Collection and Storage module, (2) the Analysis and
Visualization module, and (3) the Experiment Design and Control module. The Data
Collection and Storage module addresses the runtime collection and storage of
performance data for later retrieval. The data storage organization is based on an
abstract model of our computing prototype environment, a computing cluster of PCs.
This abstract model is mapped on a regular SQL database. We use the PostgreSQL
[POS] database management package. The collection of data is done with the SNMP
protocol, using the Scotty package [TNM]. However, the tool is general enough to
handle virtually any other packages implementing the SQL and SNMP protocols.

The Analysis and Visualization module provides the means to produce standard
plots and charts of the raw data from the database or composite values using well
known tools such as MatLab [MAT] or IDL [IDL]. This module is intended to be user
extensible to allow novel and innovative techniques such as data mining to identify
hidden patterns in the data.

The Experiment Design and Control module automates the definition and
execution of a set of experiments. This is accomplished from a combination of
information supplied by the experimenter and information extracted from the
database. The culmination of this module is the execution of a set of run-time scripts;
these carry out the benchmark code executions and subsequent data collection and
storage of the associated performance data.

Each component is built modularly using existing open software for more
flexibility and may be easily modified for experimentation with alternate features and
capabilities.

1.2 Existing Work

Many tools have been developed that focus on performance measurement. Some of
the most well known include: VAMPIR [VAM99], from the German company Pallas
GmbH, for MPI programs, AIMS [YAN96] from NASA Ames Research Center,
Paradyn [MIL95] that features performance tracing down to the statement level
through dynamic instrumentation, and Pablo [AYD96] which is known for its
visualization and self-defining format, among other features.

These tools focus much more extensively than our toolset on instrumenting codes
to collect and compute performance measurement metrics and on locating
computational bottlenecks. These and other tools also provide various visualization
capabilities.

Although our toolset offers performance measurement and visualization, it does so
by incorporating other existing tools, possibly some of the tools mentioned above. In
addition our toolset focuses on an integrated database that spans all the “benchmark”
codes over an extended time frame. This differs from current effort of the Paradyn
team [MIL99], which tracks the performance of a single code with the intention of
better tuning of that code. Our toolset will also provide the capability to design and
manage the evolution of experiments consisting of multiple codes as well as their
input and output files.

2. Performance Data Model

This section describes an abstract data model of a parallel computing environment
that represents the performance data available from our cluster in a compact but
accurate fashion. To implement this model, we selected a set of collection
mechanisms and tools as well as a storage platform using a relational database.

2.1. Performance Data Storage Platform

We designed a formal data model to represent both abstract data structures,
mechanisms and relationships within the data. This model is described in detail on our
website. Although specifically designed to represent a computing cluster, this abstract
model is easily changeable for other platforms. The data stored in the database is a set
of “snapshots” (runs). The key feature of the model lies in the ability to create virtual
experiments: such experiments are conducted without actually running the
application, but by combining instead existing runs from previous experiments,
promoting reuse of existing performance data.

Although an object-oriented database management system (OODBMS) may seem
best suited for our data model, we did not find any OODBMS that meets our
requirements for convenient querying and easy retrieval for the user. Such features are
readily available from most database management systems supporting SQL, at the
cost of a little extra administration overhead. The actual database is implemented
using PostgreSQL [POS], a freely available SQL relational database.

The entity-relationship diagram (fig. 2) translates to a set of corresponding tables.
Each table is the representation of an entity type; each column represents attributes,

each row is one occurrence. Primary keys (unique identifiers) are used to ensure
uniqueness and to allow cross-references between tables. As noted before, this makes
the database administration less straightforward due to complex key management.
However this complexity is only a burden for the tool administrator, not the user.

Our reference database implements most of the model and provides two other
interesting features. First of all, it supports time series using a variable-granularity
scheme similar to Paradyn [MIL95]; common statistics such as average are also
cached in the database to facilitate simple queries. Our toolkit also provides a generic
registry mechanism to store information without administrator privileges to create
new tables, for example application-specific tracing information.

EXPERIMENT

1

1
RUN

1

n

NETWORK
DEVICE

1

n

DEVICE
TIME SERIES

n

PROCESS
n

1

GPS DEVICE

1
MULTIKRON

DEVICE

1
PROCESS

TIME SERIES

n

MACHINE

1 1

1
n

VIRTUAL
MACHINE

1

n

Fig. 2. Entity-Relation Diagram

2.2 Collection Tools

The automated benchmarking toolset is designed to handle data collection from
most sources. In order to demonstrate the collection mechanism, our reference
implementation currently supports several mechanisms at different levels in the
parallel machine, as described below.

For low-level data such as memory usage, paging activity or network usage at the
process level, we use a modified version of UCD-SNMP [UCD], a popular, freely
available, easily extensible SNMP agent from the UC Davis. The agent already
supports a very wide range of system-level data such as network activity, via standard
interfaces. It was extended to give fast access to common statistics such as load
average, process activity and resource usage, as well as our custom high-resolution
tracing hardware, Multikron [MIN95], and GPS-synchronized timing facility. This
information is collected and stored as time-series data.

Application-level data such as response time or number of processors is collected
directly from the run control module (see below).

Our toolset is designed to support most third-party measurement tools that follow
our data model. We have demonstrated this by collecting high-level performance data
from the MPI Profiling library developed at NIST [IND99]. This library provides
transparent timing and call-count information for most MPI functions (send, receive,
etc.) as well as synthetic metrics including computation, communication and response
time for any MPI application.

3. Experiment Design and Control

The Experiment Design and Control module provides a means to quickly and
efficiently design and carry out experiments. The experiment design is shown in
Figure 3. The user specifies the desired parameters that will control the execution of
the application and their different values. The tool then builds an experimental plan
that will analyze these parameters in an efficient way, relying on advanced statistical
techniques as well as existing runs in the database to minimize the overall cost of the
experiment (both in terms of time and resources). The Run Module then automatically
carries out the experimental plan by executing the necessary program instantiations.

 Data
 Base

Experiment
Specif ication

Experimental
Plan Des ign

Plan plug-in

Store

Store

Test

Retriev e
Information

Check

Run
Package

Collection
Package

Mpiprofile

SNM P

Add-on

Run Control Submodule

Experiment Design Submodule

Retriev e
Parameters

Plan plug-in

Plan plug-in

Fig. 3. Experiment Control and Design Module

3.1 Experiment Specification

We define an experiment by a set of variables (e.g. application, number of
processors, etc.) and a set of values they can take. This mechanism is general enough
to describe most any situation the experimenter may want to describe. Our tool
provides a graphical interface that guides the experimenter through the experiment
specification process. Figure 4 illustrates some of the steps followed to define the
experiment. First the user selects the set of applications he wishes to study. For each
application, he defines a set of variables that will control the execution of the
experiment, such as the number of processors or the input file. For each variable, the
user declares a set of values that these variables can take during the experiments, for
example a range of 2 to 16 for a scalabilty test or different communication libraries.
At each step the tool interacts with the database to propose choices from previous
runs. The sample experiment shown below simultaneously tests the scalability of two
applications as well as their performance using different communication libraries.

Fig. 4. Screenshots of the Experiment Design Submodule

3.2. Experimental Plan Design

An experimental plan describes the way an experiment should be carried out. The
simplest case is a set of fully described runs, that is, an instance of each application
run with each combination of the controlling variables' specified values declared in
the experiment. Designing such an experimental plan follows a well-known process
[BOX78], widely used in most scientific disciplines. Based on the requirements (e.g.
standard error, interactions), such techniques define the optimal set of runs that match
the requirements at the lowest cost (in terms of time and resources). A number of
plan-design plug-ins can drive this package. Our initial prototype provides full-
factorial plans, that select all the possible combinations of the variables (O(en)), but
we expect future support of fractional-factorial plans (up to O(n) with no
interactions).

The next step consists of storing the fully described experiment in the database as
an experiment structure pointing to a list of runs. If some of the runs needed for the
experiment already exist in the database, they can be reused to save time if the
experimenter desires; records for the missing instances are created in the database and
flagged for execution by the Run Package. A graphical interface helps the user
through the selection of existing runs, providing the choice to hand-pick them, to let
the system chose one or to forcibly re-execute the application.

3.3. Run Control

The Run Package, as shown in Figure 3, establishes the link between the
previously described collection tools and the database. The run package carries out
the individual executions (runs) required in the experiment and manages the
performance data collection process.

This component is fully automated. It relies on an existing queuing system for most
of the job control. Our prototype uses DQS [DQS], a free, open-source job control
system from the Florida State University. As with most queuing systems, a job is
submitted in the form of a single shell script containing special control directives. For
a given experiment, it accesses the database and retrieves the list of runs to be
executed. One of the variables stored in the database has a special meaning: it points
to a command file for the job control system, provided by the user as a template for
the tool. For each run, the run package builds a new job by parsing the command file
for variable substitution and instrumenting it with data collection commands. The
created jobs are then submitted in a single batch to the job control system for
execution. The instrumentation code within the job file is responsible for starting and
stopping the collection tools as well as updating the records in the database once the
job is completed.

4. Visualization and Analysis

The toolset provides an extensible visualization and analysis package. This
package initially offers basic capabilities to visualize the performance data collected

as well as to perform standard statistical analysis. We also devised several computed
metrics adapted to get insight of performance issues specific to parallel computing
architectures. As with the rest of the toolkit, it can be easily extended to support new
analysis techniques, for example data mining.

4.1 Visualization tools

The requirements for our visualization module are the capability to plot any pair of
raw data items from the database (e.g. memory usage against time), the capability to
display graphical tests and finally the capability to plot values from computed metrics.

The visualization tool is built on top of a third-party software package. We have
chosen to use MatLab [MAT] or IDL [IDL] software, which are commercial software.
They both offer good drawing capabilities in 2D and 3D. Moreover, they are able to
conduct standard statistical analysis and to perform fast array/matrix computation.
Both of the tools can access a database using the ODBC protocol. This feature
simplifies the interaction between the visualization module and our database hosting
the experiments’ performance results. Finally, these two pieces of software are
available for the Win95/98/NT platform, MacOS and many UNIX platforms. This
allows our toolset's visualization package to run on many platforms and not only
UNIX, our primary development system.

The use of free software such as Octave [OCT] rather than commercial software is
also possible. It offers the same basic interface, computation and drawing capabilities
as MatLab, but it has no database connectivity embedded and is only available for
Win95/98/NT and UNIX.

4.2 Analysis

The analysis package helps to interpret the meaning of the performance data and
get some insight into the application and/or parallel machine behavior. It uses an
integrated visualization tool (see above) as a graphical output and computing
platforms as needed. It will assist in performing essential statistical analysis such as
standard deviation, standard error, etc. It will also provide a set of less common
graphical tests to validate the results of the experiment: independence between runs,
fixed location of measurements, etc.

We also developed a suite of new metrics focusing on different aspects specific to
cluster computing, summarized in Table 1. These metrics rely on a simple
"Communication v. Computation" model. Although this model has its limitations (it
cannot describe particular cases, such as superlinear speed up), it is rich enough to
help understand the internal behavior of parallel codes.

These metrics are all computed from high-level runtime computation and
communication information. Each one focuses on a different aspect of the execution
of a parallel job. We use the standard speedup (SU) and the efficiency (EF) as general
indicators of the gain in speed. We define several overhead metrics: the global
overhead (GOH) as the overhead introduced in the process of parallelizing the code
compared to the sequential version and the computation overhead (POH) as the extra
computation cost alone. We also define the average response time on the parallel

program, which gives an indication of the load balancing, the granularity
(computation-communication ratio) and the mean number of working processors.
This set of metrics helps in determining what can be modified in the program or the
architecture to improve performance. The analysis package will feature an automatic
diagnostic of the application using such metrics to pinpoint potential improvements.

We present this set of metrics as a basis to demonstrate the functionality of the
module. The user can extend the toolset with other analysis schemes and techniques
to highlight particular points of parallel programs.

Definition Description

p

s

R
RSU =

Speedup.

n
SUEF =

Efficiency.

n
R

R
n

i i
p

� == 1

Average response time of the parallel version.

s

sp

R
RRn

GOH
−

=
Global Overhead: overhead of parallel section of the
code compared to the sequential version.

s

n

i si

R
RP

POH � =
−

= 1

Computation Overhead: part of the global overhead
due only to computational operations.

�

�

=

== n

i i

n

i i

P

X

1

1η

Granularity: Communication vs. Computation ratio.

� =
= n

i i
p

P
R

n
1

1

Mean number of working processors

Xi: Communication time; Ri=Xi+Pi: response time of i-th process out of n
Pi: Computation time; Rs: response time of the sequential version

Table 1. Parallel Metrics

5. Summary and Conclusions

Our automated benchmarking toolset is intended to provide an extensible
environment for conducting traditional computing platform evaluations as well as
research-based computer/application performance analysis. The key mechanism is a
central database that incorporates an abstract model of the computing platform. The

database stores all available runtime performance and configuration information for
each execution of each program and provides current and archival information for
analysis and visualization. Various existing tools, covering such functions as data
collection, analysis, visualization and runtime control, will be integrated with this
database. Our goal is to integrate any performance, visualization or analysis tool into
this toolset, treating these modules as interchangeable "plug-ins." To accomplish this
we need a methodology to access these various possible disjoint tools. One possible
approach would be to specify an access API to these tools that would activate
commands or processes and exchange information.

Our initial prototype already incorporates an SQL-based database along with
SNMP data collection from the various data agents on the executing platforms. We
are using Tcl/Tk to handle most of the integration between the various tools and for
the user interface. We are currently working on the Experiment Control Package, the
access APIs and a front-end to bind the different components into a single tool.

Additional information, downloads and current status of this project is available on
our website at http://www.cluster.nist.gov.

References

[AYD96] Ruth A. Aydt, “The Pablo Self-Defining Data Format”,http://www.pablo.cs.uiuc.edu.
[BOX78] George E.P. Box, William G. Hunter, “Statistics for Experimenters, an introduction to

design, data analysis, and modeling building”, 1978.
[DQS] “DQS - Distributed Queueing System”, http://www.scri.fsu.edu/~pasko/dqs.html
[IDL] “IDL - The Interactive Data Language”, http://www.rsinc.com/idl/index.cfm
[IND99] "MPIProf", http://www.itl.nist.gov/div895/cmr/mpiprof
[MAT] “The MathWorks - MATLAB Introduction”. http://www.mathworks.com
[MIL95] B.P. Mille et al., “The Paradyn Parallel Performance Measurement Tools”, IEEE

Computer, 28, 1995.
[MIL99] Barton P. Miller, Karen L. Karavanic. “Improving Online Performance Diagnosis by

the Use of Historical Performance Data”, SC'99, Portland, Oregon (USA) November 1999.
[MIN95] Alan Mink, “The Multikron Project", http://www.multikron.nist.gov
[OCT] “Octave Home Page”, http://www.che.wisc.edu/octave
[POS] “PostgreSQL Home Page”, http://www.pyrenet.fr/postgresql
[TNM] “Scotty - Tcl Extensions for Network Management”,

http://wwwhome.cs.utwente.nl/~schoenw/scotty
[UCD] University of California at Davis, “The UCD-SNMP project home page”,

http://www.ece.ucdavis.edu/ucd-snmp
[VAM99] Pallas Gmbh, “VAMPIR”, http://www.pallas.de/pages/vampir.htm, 1999.
[YAN96] J. C. Yan and S. R. Sarukkai, “Analyzing Parallel Program Performance Using

Normalized Performance Indices and Trace Transformation Techniques”, Parallel
Computing Vol. 22, No. 9, November 1996. pages 1215-1237, 1996.

